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We investigate thermally driven convection in a rotating spherical shell subject to
inhomogeneous heating on the outer boundary, extending previous results to more
rapid rotation rates and larger amplitudes of the boundary heating. The analysis
explores the conditions under which steady flows can be obtained, and the stability of
these solutions, for two boundary heating modes: first, when the scale of the boundary
heating corresponds to the most unstable mode of the homogeneous problem; second,
when the scale is larger. In the former case stable steady solutions exhibit a two-layer
flow pattern at moderate rotation rates, but at very rapid rotation rates no steady
solutions exist. In the latter case, stable steady solutions are always possible, and
unstable solutions show convection rolls that cluster into nests that are out of phase
with the boundary anomalies and remain trapped for many thermal diffusion times.

Key words: absolute/convective< instability, convection, rotating flows < geophysical
and geological flows

1. Introduction
The problem of thermally driven convection in a rapidly rotating spherical shell

with homogeneous boundary conditions (Chandrasekhar 1961) has been extensively
studied owing to its application to planetary cores. The governing non-dimensional
parameters are defined in full in (2.4) below. They are the Rayleigh number R,
measuring the strength of the applied temperature difference across the shell; the
Ekman number E, measuring the rate of rotation and the Prandtl number Pr , the
ratio of viscous and thermal diffusivities. Initial work on this problem, herein called
the homogeneous problem, focused on the onset of convective instability (e.g. Roberts
1968; Busse 1970; Zhang 1992b; Jones, Soward & Mussa 2000; Dormy et al. 2004;
Zhang & Liao 2004; Zhang, Liao & Busse 2007), which involves determining the
most unstable azimuthal wavenumber, mc, at which convective instability occurs, and
the corresponding critical value of the Rayleigh number, R =Rc, as a function of E

and Pr . Subsequent work has considered the sequence of bifurcations that occur as
R is increased (e.g. Zhang 1991, 1992a; Sun, Schubert & Glatzmaier 1993; Tilgner &
Busse 1997; Grote & Busse 2001).

An important modification to the homogeneous problem in the geophysical context
is the effect of inhomogeneities at the outer boundary (OB) of the spherical shell.

† Email address for correspondence: c.davies@see.leeds.ac.uk
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This problem, called the inhomogeneous problem here, may also be applicable to
other bodies such as extrasolar planets. As well as E, R and Pr , the inhomogeneous
problem is governed by a new non-dimensional parameter ε, which describes the
ratio of peak-to-peak thermal amplitude variations on the OB to the temperature
difference between the boundaries. The azimuthal scale of the boundary variations,
denoted by the wavenumber mb, is also significant.

Zhang & Gubbins (1993) investigated the inhomogeneous problem for low ε and
high E. In the Earth E is very small. Estimating ε for the Earth is problematic due to
difficulties in estimating the superadiabatic heat flux; it is unlikely to be small, with
mantle convection studies predicting anything from ε = O(1) to ε = ∞ (Nakagawa &
Tackley 2007). Furthermore, seismic tomography shows large scale anomalies at the
base of the mantle (Masters et al. 1996) making mb <mc in the Earth. In this paper
we extend the results of Zhang & Gubbins (1993) by investigating the inhomogeneous
problem at lower E and higher ε for various scales of the boundary anomalies.

The inhomogeneous problem gives rise to two basic flows. One is convective, setting
in as an instability of the basic state that is driven by a difference in temperature
between the boundaries (Chandrasekhar 1961). This flow will be termed buoyancy-
driven in this work. The other flow is a thermal wind maintained by the boundary
variations, which will be called boundary-driven. While a stable equilibrium is possible
for the convective flow alone (when R <Rc), there is no such state for a finite value
of ε as the lateral variations drive a thermal wind (Zhang & Gubbins 1992). Thus
no critical value of R exists for the inhomogeneous problem, where these two flows
occur together.

The inhomogeneous problem was first studied in the infinite Pr limit by
Zhang & Gubbins (1992), who simulated flows driven by the lateral variations.
They observed a phase shift between the flow pattern and boundary anomalies due to
a dominant thermal wind balance. Zhang & Gubbins (1993) studied the effect of an
inhomogeneous fixed temperature outer boundary condition on convective instability
at infinite Pr , high E and low ε. Using a boundary condition with mb =mc, which,
following Zhang & Gubbins (1993) we call primary convection to emphasize the
wavenumber matching, they found stable (in the linear sense) steady solutions, where
the homogeneous flow pattern attached, or ‘locked’, to the boundary anomalies. In
this paper the term ‘steady’ describes a time-independent solution, while the term
‘locked’ is used to describe flows that attach to the boundary anomalies: locked
solutions may be unsteady. In the neighbourhood of Rc, Zhang & Gubbins (1993)
observed a resonance, with kinetic energy reaching a peak at a value of R, Rr , just
above critical. Stable steady solutions bifurcated to time-dependent solutions at a
value of R just above Rr , with the type of bifurcation dictated by the value of ε. For
low ε the bifurcation is of Hopf type, leading to an oscillatory solution. For larger
values of ε the bifurcation is of saddle-node type, and sets in as a wave of infinite
period. With mb <mc, called secondary convection here to emphasize the wavenumber
mismatch, Zhang & Gubbins (1993) obtained stable steady solutions, albeit at higher
values of ε. The flow patterns were dominated by the scale of the boundary forcing
but modulated by the scale of the most unstable mode. Unstable solutions exhibited
wavenumber vacillations between the competing mb and mc modes.

In this work a large value of Pr is used that makes inertial forces negligible,
an important ingredient for obtaining locked solutions (Zhang & Gubbins 1996).
It has been found by experiment that Pr = 100 gives a good approximation to
the limit Pr → ∞ considered by Zhang & Gubbins (1993) and this value is used
throughout this paper. We demonstrate our findings using four values of the Ekman
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number, E =8 × 10−4, 6 × 10−4, 3 × 10−4 and 1.2 × 10−4. Supplementary calculations
have been undertaken with E as low as 2 × 10−5, however these larger values of E

demonstrate new features more clearly. The free parameters are thus ε and R. We
keep R − Rc small to clearly demonstrate the effects of the inhomogeneous boundary
condition.

Like Zhang & Gubbins (1993) we employ fixed temperature boundary conditions in
the problem formulation. The alternative prescription is fixed heat flux at the OB, the
relevant boundary condition for the geophysical application. With homogeneous heat
flux boundary conditions Gibbons, Gubbins & Zhang (2007) showed that mc is not a
simple function of E (see also Takehiro et al. 2002), while fixed temperature boundary
conditions yield a smooth monotonic dependence of mc on E. In the moderately low E

regime, which is the focus of this paper, the two boundary conditions yield very similar
results (Gibbons et al. 2007). We therefore use fixed temperature boundary conditions
to facilitate comparison with previous studies. We shall only consider equatorially
symmetric boundary anomalies, where boundary temperature variations are mirrored
in the equatorial plane, because the most unstable mode is always equatorially
symmetric (Busse 1970) and both Zhang & Gubbins (1993) and Gibbons & Gubbins
(2000) found that equatorially antisymmetric boundary conditions have little effect
on the solutions compared to the corresponding symmetric case. The inhomogeneous
boundary condition used will be time-independent throughout.

The mathematical and numerical formulation are given in § 2. The analysis is
conducted in four stages: (i) linear onset of convective instability is studied in § 3
to determine Rc(E) and mc(E), which guide choices for the scale of the boundary
inhomogeneities; (ii) steady nonlinear inhomogeneous solutions for various ε in the
neighbourhood of Rc using different scales of the boundary variations are found in
§ 4; (iii) linear stability analysis of the steady solutions found in stage (ii) is presented
in § 5; (iv) time integration of the full nonlinear equations for solutions found to be
linearly unstable are presented in § 6. Conclusions are presented in § 7.

2. Mathematical formulation
Consider a Boussinesq fluid of constant thermal diffusivity κ , constant coefficient of

thermal expansion α and constant viscosity ν confined to a rapidly rotating spherical
shell of radial extent d = ro − ri. Here ri corresponds to the inner boundary (IB)
and ro to the OB. Spherical polar coordinates, (r, θ, φ), will be used throughout. The
fluid rotates about the vertical z -axis with angular velocity Ω . With no flow the
basic temperature gradient, ∇T0 = − βr , is produced by a uniform distribution of
internal heat sources, where T0 is the basic state temperature and β is the temperature
gradient of the internally heated basic state. Scaling length by the shell thickness, d ,
time by the thermal diffusion time, d2/κ , and using βd2 as the unit of temperature,
the non-dimensional equations are

E

Pr

(
∂u
∂t

+ (u · ∇)u
)

+ z × u = −∇P + RaT r + E∇2u, (2.1)

∂T

∂t
+ (u · ∇)T = ∇2T + 3, (2.2)

∇ · u = 0. (2.3)

Here u is the fluid velocity, P is the pressure and T is the temperature. The aspect
ratio, ro/ri, of the shell is set to 0.4 for comparison with Zhang & Gubbins (1993).
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The Ekman number, Prandtl number and modified Rayleigh number are

E =
ν

2Ωd2
, Pr =

ν

κ
, Ra =

gαβd3

2Ωκ
= RE, (2.4)

where g is the gravitational acceleration at the outer boundary. Gravity varies linearly
with radius.

The velocity field is decomposed into toroidal and poloidal components

u = ∇ × (Tr) + ∇ × ∇ × (Pr). (2.5)

Substituting (2.5) into (2.1) and applying r · ∇ × and r · ∇ × ∇ × gives

E

(
∇2 − 1

Pr

∂

∂t

)
L2T =

E

Pr
r · ∇ × [(u · ∇)u] − r · ∇ × (z × u), (2.6)

E

(
∇2 − 1

Pr

∂

∂t

)
L2∇2P + RaL2T = − E

Pr
r · ∇ × ∇ × [(u · ∇)u] − r · ∇ × ∇ × (z × u),

(2.7)

where the operator L2 is defined as

L2 = −
[

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
. (2.8)

To compare with Zhang & Gubbins (1993), impenetrable and stress-free boundary
conditions are applied to u at ri and ro, which become

P =
∂2P
∂r2

=

(
∂

∂r
− 1

r

)
T = 0, (2.9)

upon using (2.5). We consider fixed temperature at the IB and OB, corresponding to

T (ri) = 0, T (ro) = εf (ro, θ, φ), (2.10)

where f (ro, θ, φ) defines the pattern of temperature variations on the OB, r = ro. The
spherical harmonic expansion of f (ro, θ, φ) is normalized as∫ 2π

0

∫ π

0

f 2(ro, θ, φ) sin θ dθ dφ = 1. (2.11)

In this paper f is expressed by a single spherical harmonic, written Y m
l . Only

equatorially symmetric boundary variations are considered and so l = m in all the
cases that follow. The parameter ε in (2.10), the inhomogeneity parameter, is a
measure of the amplitude of boundary variations and is defined as

ε =
TB

βd2
, (2.12)

where TB is a measure of the peak-to-peak temperature variations on the boundary.
Equations (2.2), (2.6) and (2.7), together with the boundary conditions (2.9) and

(2.10), form the inhomogeneous problem. The manifold of solutions is explored in
four stages by the following sets of calculations.

2.1. Onset of convection with homogeneous boundary conditions

For the linear onset of convective instability with homogeneous boundaries (ε = 0) all
nonlinear and inhomogeneous terms in (2.6) and (2.7) are neglected. An exponential
time-dependence, ∂/∂t = σ , is assumed, where σ = σr +iσi is the complex growth rate.
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The equations thus become linear and form an eigenvalue problem for σ , which
is solved by the implicitly restarted Arnoldi method (IRAM, Lehoucq, Sorensen &
Yang 1998). The largest real part of σ represents the rate of growth (decay) of the
disturbance if σr > 0 (< 0). The imaginary part of σ determines whether the solution
is steady (σi = 0) or oscillatory (σi �= 0).

For each azimuthal wavenumber m and an initial guess for Ra, the eigensystem
is solved for σ . An iterative method is used to determine the value of Ra that gives
σr = 0. The most unstable mode, mc is the mode having the lowest such Ra, which is
the critical Rayleigh number Rac.

2.2. Locked inhomogeneous solutions

To account for the inhomogeneous outer boundary, the temperature is decomposed
as

T (r, θ, φ, t) = Θ(r, θ, φ, t) + εf (ro, θ, φ), (2.13)

making the boundary conditions on the unknown temperature Θ homogeneous. The
nonlinear equations (2.6) and (2.7) become inhomogeneous,

E∇2L2T =
E

Pr
r · ∇ × [(u · ∇)u] − r · ∇ × (z × u), ,(2.14)

E∇2L2∇2P + RaL2Θ = −εRaL2f − E

Pr
r · ∇ × ∇ × [(u · ∇)u] − r · ∇ × ∇ × (z × u),

(2.15)

∇2Θ − (u · ∇)Θ + 3 = ε(u · ∇ − ∇2)f. .(2.16)

It is anticipated that the wavenumber mb will dominate the flow pattern in the
neighbourhood of Rac (Zhang & Gubbins 1993). We therefore neglect azimuthal
wavenumbers that are not multiples of mb in some numerical computations. This
allows thousands of nonlinear calculations to be performed and enables the use of
Floquet theory (Verhulst 1993) in the instability analysis (§ 2.3). Many computations
have been performed with full resolution in azimuth to test the lower resolution
calculations and results from these computations will be presented in the following
sections. The assumption will be shown to be adequate for stable solutions.

The code used to compute locked, inhomogeneous solutions is documented in
Gibbons et al. (2007) and reproduces the results of Zhang & Gubbins (1993), who
used a different code. The code does not time step the equations; solutions are
obtained by an iterative method.

2.3. Instability analysis

A perturbation analysis is used to explore the stability of the locked solutions
computed in § 2.2. Let the locked solutions be denoted by (T0, P0, Θ0), and general
perturbations by Ã, where Ã ∈ {T̃, P̃, Θ̃}. Substituting T = T0 + T̃, P = P0 + P̃,
Θ = Θ0 + Θ̃ , into (2.1) and (2.2) and neglecting products of the perturbations gives
the following set of linear equations

E
(

∇2 − σ

Pr

)
L2T̃ =

E

Pr
r · ∇ × [(u0 · ∇)ũ + (ũ · ∇)u0] − E

Pr
r · ∇ × (z × ũ), (2.17)

E
(

∇2 − σ

Pr

)
L2∇2P̃ + RaL2Θ̃ = −r · ∇ × ∇ × [(u0 · ∇)ũ + (ũ · ∇)u0]

− E

Pr
r · ∇ × ∇ × (z × ũ), (2.18)

(∇2 − σ )Θ̃ − (ũ · ∇)Θ0 − (u0 · ∇)Θ̃ + 3 = ε(ũ · ∇)f. (2.19)
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E mc Rac σi

3.16 × 10−3 6 17.1 −10.7
8 × 10−4 7 21.7 −45.0
6 × 10−4 8 22.6 −53.6
3 × 10−4 10 26.6 −90.8

1.2 × 10−4 14 34.7 −173.5

Table 1. Results of linear stability analysis for the onset of convection with homogeneous
boundary conditions and Pr = 100. For each value of E the most unstable mode mc , the
corresponding critical modified Rayleigh number Rac and the drift rate σi are given. Negative
values of σi indicate prograde drift. Data for the lowest value of E considered by Zhang &
Gubbins (1993), E = 3.16 × 10−3, are included for comparison.

The system is linear and u0, T0 are periodic in φ, so Floquet theory may be applied
to the φ-dependence of the perturbations. We therefore define the perturbations Ã as

Ã =

L∑
l=1

l∑
m=0

Ãm
l (r)Y m

l (θ, φ) exp {iMφ + σ t}, (2.20)

where exp {iMφ} is the Floquet factor, and the Floquet exponent M is an integer. A
specified value of M defines the subclasses of perturbations that are retained in the
solutions. When M = 0 the azimuthal wavenumbers of the perturbation include

m = 0, mc, 2mc, 3mc, . . . ,

and for general M ,

m = 0, mc − M, mc + M, 2mc − M, 2mc + M, . . . ,

and so on for M =0, 1, . . . , mc − 1. Often the complete set of Ms does not need to
be computed as certain values of mc can make different subclasses equivalent: for
example, with mc =7 subclasses defined by M = 1 and M =6 are identical, as are
M = 2 and M = 5, and M = 3 and M = 4.

The system (2.17)–(2.19) is an eigensystem for σ = σr + iσi , which is solved by
IRAM. The most unstable mode is the mode with largest σr , which is found by
testing all values of M . The code used for stability analysis is documented in Gibbons
et al. (2007) and reproduces the results of Zhang & Gubbins (1993).

2.4. Time integration

To determine the properties of unstable solutions predicted by the linear analysis it is
necessary to integrate the full set of nonlinear equations, (2.1)–(2.3), by time stepping.
The details of the numerical method used here can be found in Willis, Sreenivasan &
Gubbins (2007); the code differs from that of Gibbons et al. (2007) and has been
used as an independent verification of our results.

Initial conditions for the inhomogeneous solutions are taken from the corresponding
homogeneous solutions. This allows us to track the initial response of the system to
the imposed inhomogeneous boundary condition as well as its long-term evolution.

3. Onset of convection with homogeneous boundary conditions
Results of linear stability analysis for the onset of convection with homogeneous

boundaries are presented in table 1 for each value of E considered. The most unstable
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E mc Rac σi

3.16 × 10−3 6 17.1 −10.7
8 × 10−4 7 21.7 −45.0
6 × 10−4 8 22.7 −53.6
3 × 10−4 10 26.7 −90.8

1.2 × 10−4 14 34.8 −173.7

Table 2. Same as table 1 but with Pr = ∞.

mode is always symmetric with respect to the equator and the value of mc increases
as E decreases. The radial length scale of the motions also decreases with E, however
the axial length scale is large for all E: the flow is organized into rolls (see figure 3).
The frequency is negative for every E, indicating prograde drift of the rolls. The
travelling wave is steady in a frame of reference co-rotating with the rolls.

Table 2 shows the same information as table 1 but for Pr = ∞. Values of mc

and σi are identical to the case with Pr = 100. Values of Rac differ at the fourth
significant figure between the two cases. It therefore appears that Pr = 100 is a good
approximation to the limit Pr → ∞ near the onset of convection. Calculations in the
marginally supercritical regime undertaken with both Pr = 100 and Pr = ∞ further
verify this.

4. Locked inhomogeneous solutions
4.1. Primary convection

Figure 1 shows kinetic energy as a function of Ra for E = 8 × 10−4, 6 × 10−4 and
3 × 10−4. For E � 1.5 × 10−4, there is no value of ε that forces a steady locked
solution for Ra � Rac. This interesting result will be discussed separately in § 6.

It is clear that no spatial resonance is observed in figure 1. The presence or otherwise
of a resonance is a complicated issue that depends on both ε and mb. Figure 2 shows
kinetic energy as a function of Ra for various E at three values of ε. Solutions
with E =3.16 × 10−3 and ε = 0.18 correspond to solutions obtained by Zhang &
Gubbins (1993). As E decreases with ε = 0.18, the primary resonance observed by
Zhang and Gubbins disappears at E =2.3 × 10−3. Increasing ε to 0.3 results in an
observed resonance when E = 2.5 × 10−3, however no other value of E considered
shows resonance. When ε is further increased to 0.5 resonance is not observed for
any E considered. Hence large ε and large mb appear to destroy resonance, with
no resonance observed for E < 2 × 10−3. At low E, resonance is prohibited because
the boundary effects and the buoyancy-driven flow do not reinforce each other, as
described below.

A steady locked solution is shown in figure 3 with its homogeneous counterpart.
The homogeneous solution exhibits rolls aligned with the rotation axis and centred
about the mid-radius of the shell (figures 3b and 3f ). The inhomogeneous solution,
while also being nearly two-dimensional (figure 3e), contains two layers of rolls, one
located near the IB and the other near the OB (figure 3a).

The two-layer flow pattern forms because, at low E, the radial length scale of the
convection rolls is small, resulting in weak motion near the boundaries (figure 3b).
Fluid near the IB is locked by the boundary anomalies acting near the poles of the
outer spherical shell, forming the inner layer in figure 3(a). Near the OB boundary
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Figure 1. Kinetic energy as a function of Ra for selected values of ε. Cases are E = 8 × 10−4

with a Y 7
7 boundary condition (a), E = 6 × 10−4 with a Y 8

8 boundary condition (b), and

E =3 × 10−4 with a Y 10
10 boundary condition (c). Stable solutions are shown as thick lines,

unstable solutions as broken lines. Lines are continued until the stability boundary is found.
All stable solutions are steady. Solutions are obtained at intervals of Ra = 0.1.

effects dominate, creating a second layer of rolls that are out of phase with the
boundary temperature anomalies (figure 3a), as would result if convection was absent
(Zhang & Gubbins 1992). Convection is suppressed near the mid-radius of the shell
where it is preferred in the homogeneous case (compare figures 3b and 3a).
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Figure 2. Kinetic energy as a function of Ra for various E with ε =0.18 (a), ε = 0.3 (b)
and ε =0.5 (c) with mb = mc . Stable solutions are shown as thick lines, unstable solutions as
broken lines. Lines are continued until the stability boundary is found. All stable solutions are
steady. Solutions are obtained at intervals of Ra = 0.1. The solution with E =3.16 × 10−3 and
ε = 0.18 corresponds to a solution in figure 1 (a) of Zhang & Gubbins (1993); it is included
for comparison with the earlier work.

Figure 4 shows that the two-layer pattern persists at lower values of E, with
both layers becoming more closely confined near the boundaries. As E decreases the
interior flow is less affected by the boundary anomalies and hence larger values of
ε are required for locking (figure 1). However, larger ε does not cause the two-layer
pattern as it does not alter the imposed scale of the boundary anomalies.
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Figure 3. Properties of homogeneous (right) and inhomogeneous (left) solutions for Ra = 21.7,
E =8 × 10−4, ε = 0.3 with an imposed Y 7

7 boundary condition: radial velocity (ur ) in the
equatorial plane (a, b); temperature field in the equatorial plane (c, d ); ur in the meridional
plane (e, f ), taken at φ = π. φ = 0 is at the rightmost edge of the equatorial section. The
homogeneous solution drifts in the prograde sense while the inhomogeneous solution is
steady.

This pattern does not arise at larger E because the radial length scale of the
convection rolls is greater. The effects of the boundary anomalies penetrate deeper
into the shell (compare figures 4d, 4c and 3c) as large E gives low mc( = mb). Hence
there is no region of the shell in which convection or boundary effects dominate and
the resulting interaction leads to steady solutions that retain the single-layer pattern
seen in homogeneous convection, as found by Zhang & Gubbins (1993). Calculations
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Figure 4. ur in the equatorial plane (top) and T in the equatorial plane (bottom) for the
inhomogeneous solutions with E = 6 × 10−4, Ra =22.6 and ε = 0.3 with an imposed Y 8

8

boundary condition (left), and E = 3 × 10−4, Ra = 26.6 and ε = 0.5 (right) with an imposed Y 10
10

boundary condition. Meridional sections have been omitted as they are qualitatively identical
to the case E =8 × 10−4 above. Both solutions are steady.

in figure 2 indicate that a transition from the single-layer to two-layer pattern occurs
at E ≈ 1.5 × 10−3, close to the value of E where mc changes from mc = 6 to mc = 7.

4.2. Secondary convection

Figure 5 shows kinetic energy as a function of Ra for E = 6 × 10−4, 3 × 10−4 and
1.2 × 10−4, when mb = mc/2. Larger values of ε are required to obtain steady locked
solutions than for the case mb = mc as found by Zhang & Gubbins (1993). The spatial
resonance phenomenon does not occur for any of the cases considered. We show that
this may be explained by the dominance of the boundary-driven flows.

Steady locked solutions exist for E =1.2 × 10−4 when a Y 7
7 boundary condition is

imposed, indicating that boundary conditions with mb < mc are the most effective in
obtaining steady locked solutions as E decreases. At larger E, boundary conditions
with mb = mc were found to be most effective (Zhang & Gubbins 1993). The pattern of
convection is shown in figure 6 for E = 1.2 × 10−4. The boundary mode dominates the
convection pattern; it is modulated by the mc =14 mode. High-amplitude regions of ur

are out of phase with the boundary temperature anomalies because of the dominance
of the inhomogeneous boundary condition. Figure 7 shows that the boundary mode
dominates at higher E. With mb = mc/2 the penetration depth of boundary anomalies
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Figure 5. Kinetic energy as a function of Ra for selected values of ε. Cases are E = 6 × 10−4

(mc =8) with an imposed Y 4
4 boundary condition (a), E = 3 × 10−4 (mc = 10) with an imposed

Y 5
5 boundary condition (b), and E = 1.2 × 10−4 (mc = 14) with an imposed Y 7

7 boundary
condition (c). Filled lines denote stable solutions; dashed lines denote unstable solutions.
Curves are continued until the stability boundary has been determined. All stable solutions
are steady. Solutions are obtained at intervals of Ra = 0.1.

is greater than for mb =mc and this can promote steady locked solutions. Decreasing
mb further requires a larger ε in order to obtain steady solutions because the
amplitude of boundary effects weakens. ε cannot be increased indefinitely as the
steady state becomes unstable to boundary-driven instabilities. Hence steady locked
solutions are unlikely to exist for all values of mb, especially when the difference
between mc and mb is large.
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5. Instability analysis
5.1. Stability of primary convection

Figure 8 displays instability curves for each value of E when mb =mc. Curves for
E = 1.2 × 10−4 are not shown as no steady solution exists from which to perturb.
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the most unstable disturbance is from the M = 0 subclass; long dashed lines show the M = 1
subclass; short dashed lines show the M = 2 subclass (see § 2.3 for details).

Solutions at higher values of ε cannot be calculated as too much lateral heating
induces an instability: no steady state exists to perturb. The drift rate σi is non-zero
at all points on all curves, suggesting that the bifurcations are of Hopf-type, although
the precise nature of any bifurcation cannot be determined with certainty without
integrating the full nonlinear equations.

Solutions in figure 8 become unstable to perturbations from the M = 1 and M = 2
subclasses, in contrast to Zhang & Gubbins (1993) who found most unstable modes
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with M = 0. The explanation is likely to lie with the resonance observed by Zhang
and Gubbins near Rac; no resonance is observed here and instability sets in by a
different mode breaking the constraint imposed by the boundary condition.

5.2. Stability of secondary convection

Figure 9 shows instability diagrams for E =6 × 10−4, 3 × 10−4 and 1.2 × 10−4 when
mb = mc/2. The stability boundaries for all E and ε are characterized by σi �= 0.
Unstable solutions bifurcate from steady solutions with M = 0 for all cases considered.
This contrasts with the results of § 5.1 where M �= 0 is preferred. The change is due to
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Figure 10. Kinetic energy time-series (left) and snapshots of ur in the equatorial plane (right)
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former case is at the stability boundary, while the latter is above the stability boundary.
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the introduction of a new competing scale. With mb �= mc the interaction between the
two dominant modes results in the loss of stability of steady locked solutions.

6. Time integration
6.1. Unstable primary solutions

Figure 10 shows a comparison between two nonlinear solutions at, and just above,
the stability boundary where the linear analysis predicts M = 2 as the most unstable
perturbation subclass. Both solutions are periodic in time with prograde drift near
the mid-radius of the shell, but they differ markedly in planform. At the stability
boundary modes from the M = 2 subclass are barely visible; the equatorial pattern is
dominated by seven pairs of convection cells, unevenly organized in azimuth. Above
the stability boundary the pattern is dominated by the m =9 mode (a member of
the M = 2 subclass) and modulated by a large m = 7 mode. Stationary flows near
the boundaries are observed as in previous sections. Steady locked solutions that
become unstable to perturbations from the M =1 subclass (e.g. for E = 3 × 10−4

in figure 8) display similar properties. Clearly the effect of the imposed boundary
condition diminishes quickly once Ra is increased past the stability boundary for
steady solutions and locking is quickly lost.
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6.2. Unstable secondary solutions

Figure 11 shows a periodic solution of secondary convection at the stability boundary
where linear analysis predicts M = 0 as the most unstable perturbation subclass.

The equatorial flow pattern contains four persistent centres at φ = π/4, 3π/4, 5π/4
and 7π/4 where convection rolls become trapped, forming a nest. Rolls drift between
the nests. Rolls confined within the nests are time-dependent but do not break out of
the nests; the nests are locked. Nests are out of phase with the boundary anomalies,
illustrating the dominance of the boundary effects. Another example of this type of
flow pattern is shown in figure 12, which is above the stability boundary, showing
that this behaviour persists to higher values of Ra.

6.3. Solutions for E � 1.2 × 10−4

6.3.1. Primary convection

No values of ε in the range 0.1 � ε � 10 force a steady solution for E < 1.5 × 10−4

when Ra � Rac. Kinetic energy time series for selected values of ε are shown in
figure 13. Low ε solutions are dominated by the buoyancy-driven flow and slightly
modulated by boundary effects. Solutions with ε � 5 are unstable because of large
temperature variations on the boundary.

A periodic solution for ε = 0.7 is shown in figure 14 at evenly spaced time points
spanning one period of oscillation in figure 13. The pattern maintains a striking
three-layer structure with stationary layers near the boundaries and drift confined to
a relatively thin region between these layers. The middle layer is where convection rolls
establish in the homogeneous problem. Because of the small radial length scales of
the buoyancy-driven and boundary-driven flows, the boundary anomalies are unable
to overcome the convective driving, even at the stability boundary of homogeneous
convection, and therefore no stable equilibrium exists. Figure 15 shows that such a
flow occurs at E = 2 × 10−5.

Increasing ε increases the amplitude of the boundary-driven flow, but the radial
scale of this flow is determined by mb. Hence a larger ε has little effect on the middle
layer and an ε � 5 produces vigorous motions due to the large boundary temperature
variations. Steady locked solutions can only be achieved with mb < mc (§ 4.2).

Zhang & Gubbins (1993) considered an analogous Landau equation as a framework
for understanding steady locked solutions. The framework equation implies that
there always exists an ε that will yield a steady solution for any amplitude of the
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Figure 15. Snapshot of ur in the equatorial plane for E = 2 × 10−5, Ra =62, ε = 1, with an
imposed Y 27

27 boundary condition. The most unstable mode mc = 27, and Rac = 61.1. The
solution is equatorially symmetric.

driving force. The result in this section shows the shortcomings of this analogue. The
framework equation does not account for the Coriolis force, yet it is the rotation that
dictates the selection of the mode at the onset of convective instability. The dominant
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Figure 17. Snapshot of ur in the equatorial plane for E = 2 × 10−5, ε =1 and Ra = 62 using
a boundary condition with mb = 2. The most unstable mode is mc =27 and Rac = 61.1. The
solution is equatorially symmetric.

scales of the convective flow and the boundary anomalies, together with ε, determine
whether a steady locked solution is obtained.

6.3.2. Secondary convection

No steady locked solutions have been found at E =1.2 × 10−4 for mb < 7. Figure 16
shows a comparison of unstable nonlinear solutions with different applied boundary
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Figure 18. Schematic diagram of the boundaries between steady and unsteady solutions in
the (E, ε) plane for inhomogeneous convection at Ra = Rac with mb = mc . The solid line
describes the minimum value of ε for a given E that produces a steady locked solution. Above
the dashed line large lateral temperature variations on the OB prevent locking.

inhomogeneities. The kinetic energy time series for mb = 2 is highly time-dependent,
while for mb = 4 the solution is periodic. This demonstrates the weakening of boundary
effects as mc −mb grows but flows are still locked. Both solutions display the nesting of
convection rolls shown in § 6.2, with the number of nests dictated by the imposed scale
of the boundary condition. Nesting becomes more prominent when the wavenumbers
mc and mb differ substantially: the effect is much weaker for the solutions of § 6.2.
Further calculations have shown that such solutions persist to E = 2 × 10−5, shown
in figure 17, and up to a value of Ra that is twice supercritical.

7. Conclusion
Our principal conclusion is that boundary conditions having spatial variations

larger than the preferred mode of homogeneous convection (mb <mc) are most
effective in obtaining steady solutions as E decreases. When mb = mc, steady solutions
occur, shown schematically in figure 18 for Ra = Rac. The minimum value of ε needed
to obtain a steady locked solution increases rapidly as E becomes small (solid line).
Large values of ε destabilize the system due to lateral heating (dashed line) and the
two curves therefore intersect. Such a region was not found for boundary conditions
with mb <mc. This may be due to the larger radial length scale of boundary conditions
with mb < mc than those with mb =mc: in the former case fluid motions are suppressed
deeper into the shell, with boundary effects dominating if ε is high enough.

The spatial resonance phenomenon observed by Zhang & Gubbins (1993)
disappears when E is decreased or ε is increased. This potentially important result does
not have a simple explanation, partly because resonance is a nonlinear phenomenon:
it is related to the amplitude of convection, which for a given E is dictated primarily
by ε in the neighbourhood of Rac. We suggest that loss of resonance at low E

occurs because of the small characteristic scales of the buoyancy-driven flow and
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the boundary anomalies: the boundary anomalies no longer reinforce the buoyancy-
driven flow and a two-layer flow pattern emerges. Changing ε does not affect the
characteristic scales of the flow and boundary anomalies; we may expect an absence
of resonance at low E for any ε > 0, however for large E a different mechanism must
occur to produce the behaviour in figure 2. It is the nonlinear interactions between the
boundary anomalies and the buoyancy-driven flow that ultimately determine whether
a resonance exists at high ε and it is this complexity that prevents a more detailed
understanding of the resonance phenomenon.

Solutions of secondary convection (mb < mc) are summarized in figure 19 for two
cases: (i) when mb =mc/2, the case studied in detail in this paper; (ii) when mb =2,
the geophysically relevant case. When mb =mc/2 steady solutions are always possible
for the range of E studied. For E � 6 × 10−4, solutions in the neighbourhood of Rac
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show that convection rolls cluster into nests that are out of phase with the boundary
anomalies and remain trapped for many thermal diffusion times. Our calculations
indicate that nested solutions appear abruptly as E is decreased and are insensitive
to the value of ε (shown by a dashed line in figure 19). When mb = 2 solutions are
always unstable for the range of E considered. Our calculations indicate that nesting
is weakly dependent on ε for this case: if ε is too small nesting is not observed;
however nesting appears to occur for a wide range of ε.

Nested solutions may be relevant to the Earth where the magnetic field in the
historical record shows four concentrations of intense flux (Jackson, Jonker & Walker
2000), which could be maintained by persistent large-scale fluid downwellings (Willis
et al. 2007). At low E this is unlikely to occur due to the small scales, which are
dynamically preferred, but may be produced by the nests of convection cells found in
this paper. Nesting can produce large-scale features and it is possible that the Earth
contains two such nests due to a dominant mantle anomaly with mb = 2.

It is interesting to consider the effect of an imposed inhomogeneous heat flux at
the OB rather than the imposed fixed temperature considered in this paper. Heat flux
boundary conditions tend to favour longer length scales than temperature boundary
conditions near the onset of convection (e.g. Glatzmair & Gilman 1981; Takehiro
et al. 1999); however the discrepancy disappears at high rotation rates (Gibbons et al.
2007). It can therefore be anticipated that nested solutions exist with fixed heat flux
at the outer boundary as long as mb is sufficiently lower than the mc, as we argue for
the case of fixed temperature boundaries.
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